Abstract

A Gaudin model based on the orthosymplectic Lie superalgebra osp(1|2) is studied. The eigenvectors of the osp(1|2) invariant Gaudin Hamiltonians are constructed by algebraic Bethe ansatz. Corresponding creation operators are defined by a recurrence relation. Furthermore, explicit solution to this recurrence relation is found. The action of the creation operators on the lowest spin vector yields Bethe vectors of the model. The relation between the Bethe vectors and solutions to the Knizhnik–Zamolodchikov equation of the corresponding super-conformal field theory is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.