Abstract

The currently available practices for creation of burns in the animals are mostly manual which may lead to lack of uniform wound. There is a need to develop a suitable device that could reproduce and uniformly create burn wound in animal models without the procedural variations and human variability. Present study deals with development of a burn device which has been designed for creation of animal models for burn injury. The designed burn device comprises of two main components a heating metal stylus and the thermal sensor. Metal stylus consists of two parts with top part acts as handle and bottom part contains the aluminum probe which quickly heats and cool. The temperature monitoring sensor is attached adjacent to the tip of the probe. The temperature and timer are digitally displayed and can be adjusted as per the requirement. This device is tested for creation of uniform burn in the mice model. Animals were divided into different groups and thermal burn was generated for 60 °C, 80 °C & 100 °C respectively. Burn wound was generated dorsally on shaved skin with contact time of 40 s. Skin biopsies of burn wound were collected after 24 h for histopathology analysis to determine the burn characteristics. Blood vessels damage in the skin was detected by transillumination and digital segmentation using VesSeg tool. The device is able to deliver the different temperature to the animal skin. After reaching the 60 °C, 80 °C & 100 °C for 40 s respectively electronic relays shut down the device. The different groups of the animals showed significant difference in burn morphology in temperature dependent manner. Non significant variation in the burn area of different experimental groups animals was observed. All three zones vis-a-vis coagulation, stasis and hyperaemia were observed at 100 °C whereas found indistinct in 80 °C and 60 °C treated groups. Histopathological studies clearly demonstrated the differences in damage induction in stratum corneum, epidermis, dermis, collagen and hair follicle at selected thermal points. Severe blood vessels damage was observed only at 100 °C. The vascular perfusion was recorded 14% and 57% higher in 60 °C and 80 °C treated animals respectively when compared to control animals. However, at 100 °C due to highest vessel damage the perfusion was reduced to 53% compared to control. Present study demonstrates that the device is able to generate precise and uniform burn wound in mice model. The device may be useful for burn related studies and validation of burn wound care products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.