Abstract
A consistent nonperturbative approach (based on QFT) to neutral fermion creation (due to their magnetic moments) in strong inhomogeneous magnetic fields is considered. It is demonstrated that quantization in terms of neutral particles and antiparticles is possible in terms of the states with well-defined spin polarization. Such states are localizable and can form wave packets in a given asymptotic region. In this case, the problem can be technically reduced to the problem of charged-particle creation by an electric step. In particular, the relation to the Schwinger method of an effective action is established. As an example, we calculate neutral fermion creation from the vacuum by a linearly growing magnetic field. We show that the total number and the vacuum-to-vacuum transition probability of created pairs depend only on the gradient of the magnetic field, but not on its strength, and this fact does not depend on the spacetime dimension. We show that the created flux aimed in one of the directions is formed from fluxes of particles and antiparticles of equal intensity and with the same magnetic moments parallel to the external field. In such a flux, particle and antiparticle velocities that are perpendicular to the plane of the magnetic moment and flux direction are essentially depressed. The creation of neutral fermions with anomalous magnetic moments leads to a smoothing of the initial magnetic field, which in turn prevents the appearance of superstrong constant magnetic fields. Our estimations show that the vacuum instability with respect to the creation of neutrinos and even neutrons in strong magnetic fields of the magnetars and fields generated during a supernova explosion has to be taken into account in the astrophysics. In particular, it may be of significance for dark matter studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.