Abstract

Tumor necrosis factor-α (TNF), which is an immuno-modulatory cytokine, has been suggested to cause inflammatory responses as well as protection against tissue dysfunction by binding two types of TNF receptor (TNFR1/TNFR2). However, the physiological effects of TNFR2-specific activation remain unclear. We therefore aimed to generate a TNF mutant with full TNFR2-selective agonist activity as a functional analytical tool. In this study, we utilized a phage display technique to create mouse TNFR2 (mTNFR2)-selective TNF mutants that bind specifically to mTNFR2 and show full bioactivity compared with wild-type TNF. A new phage library displaying TNF mutants was created, in which nine amino acid residues at the predicted receptor-binding site were randomized. From this library, an agonistic TNF mutant exhibiting high binding selectivity and bioactivity to mTNFR2 was isolated. We propose that this TNF mutant would be a powerful tool with which to elucidate the functional roles of mTNFR2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.