Abstract

We examined the steady state and time-resolved emission spectral properties of [Ru(bpy)3]2+ and [Ru(bpy)2-(dcb)]2+, where bpy is 2,2'-bipyridine and dcb is 2,2'-bipyridine-4,4'-dicarboxylic acid, in fluid solution when excited with 90 fs pulses from a mode-locked Ti/sapphire laser. Over the wavelength range 820-900 nm, both complexes displayed two-photon excitation as observed by a quadratic dependence of the emission intensity on incident power. Steady state emission and time-resolved frequency-domain intensity decay measurements revealed that two-photon excitation of each complex resulted in the same emission spectra and single-exponential decays as observed for one-photon excitation at a variety of temperatures in different solvents. The two-photon excitation cross section of [Ru(bpy)3]2+ measured at 880 nm was determined to be 4.3 × 10-50 cm4 s/photon. These results clearly show that metal-to-ligand charge transfer (MLCT) excited states can in fact be obtained through multiphoton processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.