Abstract

Data presented on the influence of the temperature in the range 80–650 K on the spectral kinetics of the luminescence and transient absorption of unactivated CsI crystals under irradiation by pulsed electron beams (〈E〉=0.25 MeV, t1/2=15 ns, j=20 A/cm2). The structure of the short-wavelength part of the transient absorption spectra at T=80–350 K exhibits features, suggesting that the nuclear subsystem of self-trapped excitons (STE’s) transforms repeatedly during their lifetime until their radiative annihilation at T⩾80 K, alternately occupying di-and trihalide ionic configurations. It is established that a temperature-induced increase in the yield of radiation defects, as well as F and H color centers, and quenching of the UV luminescence in CsI occur in the same temperature region (above 350 K) and are characterized by identical thermal activation energies (∼0.22 eV). It is postulated that the STE’s in a CsI crystal can have a trihalide ionic core with either an on-center or off-center configuration; the high-temperature luminescence of CsI crystals is associated with the radiative annihilation of an off-center STE with the structure (I−(I0I−e−))*.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.