Abstract

The need of near-surface color centers in diamond for quantum technologies motivates the controlled doping of specific extrinsic impurities into the crystal lattice. Recent experiments have shown that this can be achieved by momentum transfer from a surface precursor via ion implantation, an approach known as “recoil implantation.” Here, we extend this technique to incorporate dielectric precursors for creating nitrogen-vacancy (NV) and silicon-vacancy (SiV) centers in diamond. Specifically, we demonstrate that gallium focused-ion-beam exposure to a thin layer of silicon nitride or silicon dioxide on the diamond surface results in the introduction of both extrinsic impurities and carbon vacancies. These defects subsequently give rise to near-surface NV and SiV centers with desirable properties after annealing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.