Abstract

We describe a device using the Stark effect to extract the cold fraction of nitric oxide molecules from a warmer thermal distribution. Room temperature NO is cryogenically cooled to 72-82 K and injected into a straight, hexapole guide that uses the Stark effect. By blocking line-of-sight trajectories from the input to the output, primarily the slowest molecules are guided around the obstruction and are transferred into a new chamber. We measure the temperature distribution using a field-stabilized Rydberg time-of-flight technique. A superposition of molecular Rydberg states is excited, sufficiently increasing the lifetime of the excited state for a time-of-flight measurement for cold molecular samples. We produce a continuous source of nitric oxide with temperatures ranging from 7 to 20 K in the lowest ro-vibrational state. The output temperature is controlled by the initial temperature distribution and the guide voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.