Abstract
AbstractPlasmonic networks attract increasing attention owing to their strong plasmon coupling effects at hotspot regions, where intriguing, collective optical behavior and field enhancement occur. Engineering network architectures with flexible control over density and intensity of hotspots, thus fine‐tuning electromagnetic field is the prerequisite for fully exploiting their potential use in diverse plasmon‐based applications, but it represents a great challenge. Herein, a cage‐assisted bottom‐up self‐assembly strategy is proposed to construct a series of cage‐bridged complex network architectures with a high degree of flexibility in hotspot modulation. Critical parameters associated with plasmonic networks, including interparticle distance, the density and intensity of hotspots, as well as molecule accessibility of hotspot can be simultaneously and flexibly adjusted at will. Importantly, the integration of host–guest chemistry of molecular cages into interparticle regions of networks endows selective molecule trapping capability in hotspots, offering tremendous opportunities for broader plasmon‐based applications. The present study not only develops efficient plasmonic networks with enhanced density of hotspots and intense electromagnetic fields, but also provides new avenues for artificially engineering network architectures with advanced functionalities and facilitates further applications in sensing and optoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.