Abstract

The intensity profiles near the focus of a 4π high numerical aperture focusing configuration for two counter-propagating radially polarized hollow Gaussian (HG) vortex beams are examined numerically. Theoretical calculations manifest that, in contrast to the single-objective focusing system, a three-dimensional super-resolution focal spot with purely transverse polarization can be formed. Such an unusual pattern stems from combining the faultlessly destructive interference of the longitudinal component of the electric field with the constructive interference of the transverse components (azimuthal and radial components) created by the two counter-propagating radially polarized vortex beams, as well as benefits from the higher-order HG mode (e.g., n = 4) to govern the aspect ratio of the focal spot. Moreover, the tolerances on focusing performance for modest displacement from the center of the HG beams with different orders are researched in detail. We expect that such a three-dimensional super-resolution field with transverse polarization can be extensively used in super-resolution confocal microscopy and three-dimensional high-density optical storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.