Abstract
As an alternative to electronic pacemakers, we explored the feasibility of converting ventricular myocytes into pacemakers by somatic cell fusion. The idea is to create chemically induced fusion between myocytes and syngeneic fibroblasts engineered to express HCN1 pacemaker channels (HCN1-fibroblasts). HCN1-fibroblasts were fused with freshly isolated guinea pig ventricular myocytes using polyethylene-glycol 1500. In vivo fused myocyte-HCN1-fibroblast cells exhibited spontaneously oscillating action potentials; the firing frequency increased with beta-adrenergic stimulation. The heterokaryons created ectopic ventricular pacemaker activity in vivo at the site of cell injection. Coculture of nonfused HCN1-fibroblasts and myocytes without polyethylene-glycol 1500 revealed no evidence of dye transfer, demonstrating that the I(f)-mediated pacemaker activity arises from heterokaryons rather than electrotonic coupling. This nonviral, non-stem cell approach enables autologous, adult somatic cell therapy to create biopacemakers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.