Abstract

p27SJ is a novel protein from a callus culture of St. John's wort that modulates transcription of the HIV-1 promoter in several mammalian cells [Darbinian-Sarkissian, N., Darbinyan, A., Otte, J., Radhakrishnan, S., Sawaya, B.E., Arzumanyan, A., Chipitsyna, G., Popov, Y., Rappaport, J., Amini, S., Khalili, K., 2006. p27(SJ), a novel protein from St. John's wort, that suppresses expression of HIV-1 genome. Gene Ther. 13, 288–295]. Here, we armed p27SJ with signals from Ig-kappa light chain that allow its efficient excretion from the cells, and from HIV-1 Tat that facilitates its uptake by other cells for its utilization by a protein transduction method. We demonstrate that treatment of cells containing the HIV-1 LTR with conditioned media from cells expressing the armed p27SJ ( excp27SJ upt) results in suppression of the viral activation by the C/EBPβ transcription factor. Once imported into the cells, excp27SJ upt impacts the nuclear localization of C/EBPβ and by retaining the protein in the cytoplasm affects its DNA binding and hence transcriptional activity. The armed p27SJ also inhibits Tat-induced activation of the LTR and decreases the level of viral replication in promonocytic cells including U-937 and T-lymphocytic cells. Our observations introduce a new bi-directional protein transduction system with a broad spectrum of applications for manufacturing therapeutic peptides by a specific group of cells called donor, and delivery to the target cells named recipient. Furthermore, our results support the utility of soluble p27SJ in suppressing transcription and replication of HIV-1 by interfering with the function of cellular proteins such as C/EBPβ and viral activators including Tat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call