Abstract
Many topics in science are notoriously difficult for students to learn. Mechanisms and processes outside student experience present particular challenges. While instruction typically involves visualizations, students usually explain in words. Because visual explanations can show parts and processes of complex systems directly, creating them should have benefits beyond creating verbal explanations. We compared learning from creating visual or verbal explanations for two STEM domains, a mechanical system (bicycle pump) and a chemical system (bonding). Both kinds of explanations were analyzed for content and learning assess by a post-test. For the mechanical system, creating a visual explanation increased understanding particularly for participants of low spatial ability. For the chemical system, creating both visual and verbal explanations improved learning without new teaching. Creating a visual explanation was superior and benefitted participants of both high and low spatial ability. Visual explanations often included crucial yet invisible features. The greater effectiveness of visual explanations appears attributable to the checks they provide for completeness and coherence as well as to their roles as platforms for inference. The benefits should generalize to other domains like the social sciences, history, and archeology where important information can be visualized. Together, the findings provide support for the use of learner-generated visual explanations as a powerful learning tool.Electronic supplementary materialThe online version of this article (doi:10.1186/s41235-016-0031-6) contains supplementary material, which is available to authorized users.
Highlights
Learning from visual representations in STEM Given the inherent challenges in teaching and learning complex or invisible processes in science, educators have developed ways of representing these processes to enable and enhance student understanding
The results showed no overall differences in learning outcomes, the learners provided text included significantly more information in their diagrams than the other group
The results show that low spatial ability participants were able to learn as successfully as high spatial ability participants when they first generated an explanation in a visual format
Summary
Learning from visual representations in STEM Given the inherent challenges in teaching and learning complex or invisible processes in science, educators have developed ways of representing these processes to enable and enhance student understanding. External visual representations, including diagrams, photographs, illustrations, flow charts, and graphs, are often used in science to both illustrate and explain concepts (e.g., Hegarty, Carpenter, & Just, 1990; Mayer, 1989). Visualizations can directly represent many structural and behavioral properties. They help to draw inferences (Larkin & Simon, 1987), find routes in maps (Levine, 1982), spot trends in graphs (Kessell & Tversky, 2011; Zacks & Tversky, 1999), imagine traffic flow or seasonal changes in light from architectural sketches Given the differences in how visual and verbal information is processed, how learners draw inferences and construct understanding in these two modes warrants further investigation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.