Abstract

In the field of seismic interferometry using noise, surface waves and body waves between receivers have been retrieved by crosscorrelating recordings of uncorrelated noise sources to extract useful subsurface information. When the positions of the noise sources are known, inter-source interferometry can be applied to retrieve the wavefileds between sources, thus turning sources into virtual receivers. Previous applications of this form of interferometry assume impulsive point sources or transient sources with similar signatures. We investigate the requirements of applying inter-source seismic interferometry using drill-bit noise to retrieve the reflection responses at those positions. We show that an accurate estimate of the source function is essential for such application. The preprocessing involves using standard seismic-while-drilling procedures, such as pilot crosscorrelation and pilot deconvolution to remove the drill-bit signatures in the data, and then applying crosscorrelation interferometry. Provided that pilot signals are reliable, drill-bit data can be redatumed from surface to the depth of boreholes using this inter-source interferometry approach without any velocity information of the medium. We show that a well-positioned image below the borehole can be obtained with just a simple velocity model using these reflection responses. We also discuss some of the practical hurdles that restrict its application offshore.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.