Abstract

Three-dimensional (3D) anatomy models have been used for education in health professional schools globally. Virtual technology has become more popular for online teaching since the COVID-19 pandemic. This chapter will describe a project in which a series of virtual anatomical models of organs and structures were developed for educational purposes, and it will describe in detail how to build three-dimensional (3D) movies using DemoMaker. Although setting up the 3D system was complicated and challenging, the process of reconstructing 3D models from radiographic images and the steps of creating animations and 3D movies are exponentially simpler. These efforts require minimal training, thus allowing most people to be able to engage in this modeling process and utilize the moviemaking steps. Amira® software and computed tomographic angiography (CTA) data were used to create 3D models of the lungs, heart, liver, stomach, kidney, etc. The anatomical locations of these structures within the body can be identified and visualized by recording information from multiple CTA slices using volume and surface segmentation. Ultimately, these virtual 3D models can be displayed via dual projectors onto a specialized silver screen and visualized stereoscopically by viewers as long as they wear 3D polarized glasses. Once these 3D movies are created, they can be played automatically on a computer screen, silver screen, 3D system playback screen, and video player, and they can be embedded into PowerPoint lecture slides. Both virtual models and movies are suitable for self-directed learning, face-to-face class teaching, and virtual anatomy education. Model animations and 3D movie displays offer students the opportunities to learn about anatomy and the anatomical positions of organs in the body and their 3D relationships to one another. By observing and studying these 3D models, students have the potential to be able to compartmentalize the anatomical information and retain it at a higher level than students learning corresponding anatomy without similar resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call