Abstract
It is today generally accepted that to carry‐out realistic transport simulation trials, field data must be acquired from vehicles travelling on the actual route(s) to be used for a particular distribution environment. This approach requires time, effort, access to data recording equipment as well as the necessary expertise to analyse the collected data. Often, this is out of reach of smaller operators who want a reasonable approximation without the time and expense. Currently, the only available option is the adoption of generic test spectra and levels that have been shown to be approximate representations of distribution environments. This paper discusses an alternative and practical method that uses some knowledge of the dynamic characteristics of various vehicle types along with an assessment of the types of roads (road roughness) to be encountered along a particular route. The method exploits the fact that the spectral characteristics (power spectral density) of road profiles are well known. The paper shows how this road surface elevation spectral function is combined with a numerical model of a particular vehicle type and speed to produce a target vibration power spectral density suitable for vibration test systems. One added benefit is that the method is capable of calculating the variations in root mean square levels of the response vibrations. This is presented as the root mean square distribution which, when coupled with the target power spectral density, can be used to synthesize realistic random vibrations that bear statistical similitude with real, field vibrations. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.