Abstract
In this paper, our focus is on using a rule-based approach to develop agents with artificial general intelligence. In rule-based systems, developing effective rules is a huge challenge, and coding rules for agents requires a large amount of manual work. Association rules mining (ARM) can be used for discovering specific rules from data sets and determining relationships between data sets. In this paper, we introduce a modified ARM method and use it to discover rules that analyse the surrounding environment and determine movements for an agent-guided vehicle that has been designed to achieve autonomous parking. The rules are created by our ARM-based method from training data gained during manual training in customised parking scenarios. In this system, data are represented in terms of fuzzy symbolic elements. We have tested our system by simulation in a virtual environment to demonstrate the effectiveness of this new approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.