Abstract
We propose schemes for preparing W and GHZ photonic states entangled in polarization via quantum walks, where the trajectory exchanging of identical photons plus postselection induces the coupling between their polarization degrees of freedom. Being different from the polarization beam splitter-based approach, the indistinguishability of identical photons provides an alternative for coupling photons, which is more phase stable and may induce richer actions than the traditional polarization beam splitter on input photons. Our schemes demonstrate that this new coupling mechanism for photons is originated from the fact that trajectory-exchanging operation plus postselection can extract entangled states from the initially product states, and this new coupling mechanism may find considerable potential applications in both quantum communication and quantum computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.