Abstract

The stability presented by trivalent metal-organic frameworks (MOFs) makes them an attractive class of materials. With phosphonate-based ligands, crystallization is a challenge, as there are significantly more binding motifs that can be adopted due to the extra oxygen tether compared to carboxylate counterparts and the self-assembly processes are less reversible. Despite this, we have reported charge-assisted hydrogen-bonded metal-organic frameworks (HMOFs) consisting of [Cr(H2O)6]3+ and phosphonate ligands, which were crystallographically characterized. We sought to use these HMOFs as a crystalline intermediate to synthesize ordered Cr(III)-phosphonate MOFs. This can be done by dehydrating the HMOF to remove the aquo ligands around the Cr(III) center, forcing metal-phosphonate coordination. Herein, a new porous HMOF, H-CALF-50, is synthesized and then dehydrated to yield the MOF CALF-50. CALF-50 is ordered, although it is not single crystalline. It does, however, have exceptional stability, maintaining crystallinity and surface area after boiling in water for 3 weeks and soaking in 14.5 M H3PO4 for 24 h and 9 M HCl for 72 h. Computational methods are used to study the HMOF to MOF transformation and give insight into the nature of the structure and the degree of heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.