Abstract

ABSTRACTWe present a study on the liquid/solid interface, which can be electrostatically doped to a high carrier density (n~1014 cm-2) by electric-double-layer gating. Using micro-cleavage technique on the layered materials: ZrNCl and graphene, atomically flat channel surfaces can be easily prepared. Intrinsic high carrier density transport regime is accessed at the channel interface of electric double-layer field effect transistor, where novel transport properties are unveiled as the field-induced superconductivity on the ZrNCl with high transition temperature at 15 K, and accessing a high carrier density up to 2×1014 cm-2 in graphene and its multi-layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.