Abstract
Superconductivity results from a Bose condensate of Cooper-paired electrons with a macroscopic quantum wavefunction. Dramatic effects can occur when the region of the condensate is shaped and confined to the nanometer scale. Recent progress in nanostructured superconductors has revealed a route to topological superconductivity, with possible applications in quantum computing. However, challenges remain in controlling the shape and size of specific superconducting materials. Here, we report a new method to create nanostructured superconductors by partial crystallization of the half-Heusler material, YPtBi. Superconducting islands, with diameters in the range of 100 nm, were reproducibly created by local current annealing of disordered YPtBi in the tunneling junction of a scanning tunneling microscope (STM). We characterize the superconducting island properties by scanning tunneling spectroscopic measurements to determine the gap energy, critical temperature and field, coherence length, and vortex formations. These results show unique properties of a confined superconductor and demonstrate that this new method holds promise to create tailored superconductors for a wide variety of nanometer scale applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.