Abstract
In this work we propose two protocols to make an effective gauge potential for microwave photons in circuit QED. The schemes consist of coupled transmons whose flux are harmonically modulated in time. We investigate the effect of various types of capacitive and inductive couplings, and the role of the fixed phase offset of each site on the complex coupling rate between coupled qubits. These configurations can be directly realised in a superconducting circuit and is easily extendable to a scalable lattice. Due to the intrinsic non-linearity of the transmon qubits such lattices would be an ideal platform for simulating Bose-Hubbard Hamiltonians with non-trivial gauge fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.