Abstract

Interest in creating membranes that can separate gases has intensified in recent years owing, in large part, to climate change. Specifically, the need for separating CO2 and N2 from flue gas in an economically viable fashion is now considered urgent. This Perspective highlights two recent developments from my laboratory—defect repair of polyelectrolyte multilayers (PEMs) using micellar solutions of sodium dodecyl sulfate (SDS) and the surface modification of a highly permeable polymer, poly[1-(trimethylsilyl) propyne] (PTMSP)—which I believe have significant implications not only for this CO2/N2 problem but also for the ever-growing area of layer-by-layer (LbL) thin films. A brief mention is also made of past efforts that have been aimed at creating hyperthin membranes from porous surfactants and from PEMs with a view toward gas separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.