Abstract

Metal-ion batteries are promising for large-scale energy storage. Their potential commercialization not only depends on their superior electrochemical performance, but also on the large-scale synthesis cost of electrode materials. In the conventional industrial technology for producing non-oxides, argon protection is required to avoid oxidation, leading to additional costs and extra processing. We demonstrate, without protection gas, that ball milling in air with a small amount of Ti additive can be a cost-effective approach for preparing high-performance alloy anodes. Ti consumes the oxygen, forming TiO2 (< 10 nm) in situ with high ionic conductivity, while also preventing oxidation and sustaining the electrical conductivity of carbon. This strategy effectively promotes the rate capability (61% capacity retention from 60 to 3000 mA g−1) of SnSb/carbon-nanotube anode (over 204% better than without Ti additive).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.