Abstract

Innovative interfaces for the display and control of information constitute an essential topic for interactive experiential learning. In this study, an interactive three-dimensional (3D) holographic projection system was developed. This system was used in a physiology-based experiential learning experiment. Learners used noncontact somatosensory methods to manipulate 3D learning objects (targets) and learned the characteristics of physiological structures in a 3D holographic projection environment. The learners did not require a physical button interface. Embodied gesture recognition was implemented in this interactive system. Furthermore, this study explored the system’s usability factors to improve the human–computer interaction and availability of the system. A total of 60 participants (30 female and 30 male) participated in a usability experiment for this 3D interactive holographic projection learning system. The participants were required to complete an interactive experiential learning task concerning the physiological structures of human organs. At the end of the task, each participant was asked to complete a questionnaire featuring 5-point Likert scales. Four crucial system usability factors were proposed through principal component analysis. These factors included ‘labelling’, ‘continuity’, ‘backlash’, and ‘ambiences’. Gender had no significant effect on any of these factors (p > 0.05). Further, the learner’s experiential learning characteristics and human–computer interaction modality are described based on the results of the usability study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call