Abstract

Aims. We present a database of 43 340 atmospheric models (∼80 000 models at the conclusion of the project) for stars with stellar masses between 9 and 120 M⊙, covering the region of the OB main-sequence and Wolf-Rayet stars in the Hertzsprung-Russell diagram. Methods. The models were calculated using the ABACUS I supercomputer and the stellar atmosphere code CMFGEN. Results. The parameter space has six dimensions: the effective temperature Teff, the luminosity L, the metallicity Z, and three stellar wind parameters: the exponent β, the terminal velocity V∞, and the volume filling factor Fcl. For each model, we also calculate synthetic spectra in the UV (900−2000 Å), optical (3500−7000 Å), and near-IR (10 000−40 000 Å) regions. To facilitate comparison with observations, the synthetic spectra can be rotationally broadened using ROTIN3, by covering v sin i velocities between 10 and 350 km s−1 with steps of 10 km s−1. Conclusions. We also present the results of the reanalysis of ϵ Ori using our grid to demonstrate the benefits of databases of precalculated models. Our analysis succeeded in reproducing the best-fit parameter ranges of the original study, although our results favor the higher end of the mass-loss range and a lower level of clumping. Our results indirectly suggest that the resonance lines in the UV range are strongly affected by the velocity-space porosity, as has been suggested by recent theoretical calculations and numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call