Abstract
Patching whole slide images (WSIs) is an important task in computational pathology. While most of them are designed to classify or detect the presence of pathological lesions in a WSI, the confounding role and redundant nature of normal histology are generally overlooked. In this paper, we propose and validate the concept of an “atlas of normal tissue” solely using samples of WSIs obtained from normal biopsies. Such atlases can be employed to eliminate normal fragments of tissue samples and hence increase the representativeness of the remaining patches. We tested our proposed method by establishing a normal atlas using 107 normal skin WSIs and demonstrated how established search engines like Yottixel can be improved. We used 553 WSIs of cutaneous squamous cell carcinoma to demonstrate the advantage. We also validated our method applied to an external dataset of 451 breast WSIs. The number of selected WSI patches was reduced by 30% to 50% after utilizing the proposed normal atlas while maintaining the same indexing and search performance in leave-one-patient-out validation for both datasets. We show that the proposed concept of establishing and using a normal atlas shows promise for unsupervised selection of the most representative patches of the abnormal WSI patches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.