Abstract

The purpose of this study is to create a computer simulation which numerically predicts the drying conditions within a continuous cross-flow grain drying system. The model is based on a system of four partial differential equations using energy and mass balances for the air, grain, and moisture within the column. This simulation includes: (1) a graphical user interface for varying the operating conditions, (2) a numerical scheme for solving the system of equations based on a backwards finite difference scheme, and (3) graphical and tabular output data. The output includes graphs of moisture content, air temperature, and grain temperature inside the column, as well as the predicted energy consumption of the system. Using this program, the grain drying model is analyzed in order to gain insight towards the optimal operating conditions for the grain dryer. The study also makes adjustments to the model in order to improve accuracy and ease of use. In particular, the Page equation for single-kernel drying is implemented. Model assumptions are also analyzed for validity, and the solutions are verified using experimental data collected in a previous study. The overall goal of this research is to improve grain dryer design and optimize operating conditions in order to reduce energy costs, improve grain quality, and increase the understanding of deep bed grain drying models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.