Abstract

To provide colloidally stable polyplexes formed between pDNA and cationic polymers, cationic polymers have been modified with hydrophilic polymers to form a hydrophilic shell. Block copolymers of cationic and hydrophilic polymers and cationic polymers grafted with hydrophilic polymers are representative designs of such polymers. Here, we report a new design of cationic polymers and oligocationic peptide-grafted polymers. We synthesized 15 kinds of graft copolymers by varying the number of cationic charges of the peptides and their grafting density. We found that graft copolymers with less cationic peptides and less grafting density formed colloidally stable polyplexes. Interestingly, the less cationic graft copolymers bind to excess amounts of pDNA. We also found that the graft copolymers showed selectivity toward reactive enzymes affording the reaction of pDNA with nucleases, while suppressing both the replication of DNA by DNA polymerase and gene expression. The suppression of the replication and expression is considered to result from the high capacity of the graft copolymers for binding with pDNA. The polynucleotides produced by DNA polymerase or RNA polymerase would be captured by the graft copolymers to impede these enzymatic reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call