Abstract

Escherichia coli β-glucuronidase (GUS) has been used as a reporter enzyme in molecular biology and engineered as an enzyme switch for the development of homogeneous biosensors. In this study, we developed a thermostable GUS enzyme switch based on the thermostable GUS mutant TR3337 by disrupting a conserved salt bridge (H514-E523) between the diagonal subunits of its homotetramer. A combinatorial library (240 variants) was screened using a novel high-throughput strategy, which led to the identification of mutant DLW (H514D/M516L/Y517W) as a functional enzyme switch in a caffeine-recognizing immunosensor. Molecular dynamics simulations were performed to predict the topology change around position 514, and a side-chain flip of D514 (repulsion with E523) was observed in the DLW mutant. Up to 1.8-fold of signal-to-background ratio was confirmed when measured at up to 45 °C, thereby highlighting the DLW mutant as a versatile tool for developing thermostable immunosensors for in vitro and in cellulo applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call