Abstract

PurposeCreatine Kinase (CK) reaction plays an important role in energy metabolism and estimate of its reaction rate constant in heart provides important insight into cardiac energetics. Fast saturation transfer method ( nominal) to measure CK reaction rate constant (kf) was previously demonstrated in open chest swine hearts. The goal of this work is to further develop this method for measuring the kf in human myocardium at 7T. approach is combined with 1D-ISIS/2D-CSI for in vivo spatial localization and myocardial CK forward rate constant was then measured in 7 volunteers at 7T.Methods method uses two partially relaxed saturation transfer (ST) spectra and correction factor to determine CK rate constant. Correction factor is determined by numerical simulation of Bloch McConnell equations using known spin and experimental parameters. Optimal parameters and error estimate in calculation of CK reaction rate constant were determined by simulations. The technique was validated in calf muscles by direct comparison with saturation transfer measurements. pulse sequence was incorporated with 1D-image selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging (1D-ISIS/2D-CSI) for studies in heart. The myocardial CK reaction rate constant was then measured in 7 volunteers.ResultsSkeletal muscle kf determined by conventional approach and approach were the same 0.31 ± 0.02 s-1 and 0.30 ± 0.04 s-1 demonstrating the validity of the technique. Results are reported as mean ± SD. Myocardial CK reaction rate constant was 0.29 ± 0.05 s-1, consistent with previously reported studies.Conclusion method enables acquisition of 31P saturation transfer MRS under partially relaxed conditions and enables 2D-CSI of kf in myocardium. This work enables applications for in vivo CSI imaging of energetics in heart and other organs in clinically relevant acquisition time.

Highlights

  • Energy is required for normal cardiac function and alterations in energy metabolism may contribute to the development of heart failure [1,2,3,4]

  • Skeletal muscle kf determined by conventional approach and T1nom approach were the same 0.31 ± 0.02 s-1 and 0.30 ± 0.04 s-1 demonstrating the validity of the technique

  • A decrease in PCr/adenosine triphosphate (ATP) ratio has been used as an early indicator of energy deficiency and may predict mortality in heart failure patients

Read more

Summary

Methods

T1nom method uses two partially relaxed saturation transfer (ST) spectra and correction factor to determine CK rate constant. Correction factor is determined by numerical simulation of Bloch McConnell equations using known spin and experimental parameters. Optimal parameters and error estimate in calculation of CK reaction rate constant were determined by simulations. The technique was validated in calf muscles by direct comparison with saturation transfer measurements. T1nom pulse sequence was incorporated with 1D-image selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging (1D-ISIS/2D-CSI) for studies in heart. The myocardial CK reaction rate constant was measured in 7 volunteers. Data Availability Statement: All relevant data are within the manuscript and its Supporting Information files.

Results
Conclusion
Introduction
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.