Abstract

This paper presents a novel scheme to biaxially package and deploy flat membranes, in which the thickness of the membrane is accounted for through the novel concept of slipping folds. The membrane is divided into parallel strips connected by slipping folds, and specially chosen wrapping profiles that require zero slip along the edges of the membrane are identified. This packaging scheme avoids the kinematic incompatibilities that in other schemes result in local buckles and wrinkles that increase the deployment force and permanently deform the membrane. The paper also presents a scheme to apply uniform uniaxial prestress to the deployed membrane, as well as a two-stage deployment scheme. Packaging efficiencies of up to 83% have been demonstrated for meter-scale models, although for large membranes the packaging efficiency approaches 100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.