Abstract
C-reactive protein (CRP), an acute-phase protein and newly recognized indicator of cardiovascular risk, may have direct actions on the vascular wall. Previous studies suggest that CRP is a vasodilator that activates smooth muscle K(+) channels. We examined the reported vasoactive properties of CRP and further explored its mechanisms of action. CRP decreased blood pressure in rats and increased coronary flow in open-chest dogs at a constant coronary perfusion pressure. CRP relaxed rat aortic rings and mesenteric small arteries that were contracted with phenylephrine. Relaxation was not affected by endothelial denudation or inhibition of nitric oxide (NO) synthase but was blocked by inhibition of soluble guanylate cyclase or K(+) channels. CRP solutions remained effective, i.e., elicited vasodilation, even after boiling or enzymatic digestion, which suggests the presence of a nonprotein contaminant. Sodium azide (NaN(3), 0.1%) is the preservative used for commercially available CRP and a potential source of NO. NaN(3) elicited the same cardiovascular effects as CRP preparations at equal concentrations, and its actions were blocked by inhibition of guanylate cyclase and K(+) channels. NaN(3)-free CRP, prepared by gel-filtration centrifugation and confirmed by electrophoresis, had no effect on vascular tone. Inhibition of vascular smooth muscle catalase with 3-amino-1,2,4-triazole completely prevented the effects of NaN(3) and NaN(3)-containing CRP solutions. We demonstrate that the acute vasoactive properties of commercially available CRP preparations are attributable to NaN(3) (and subsequent production of NO by catalase); therefore, this study suggests a reappraisal of the acute role of CRP in regulating vascular tone.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.