Abstract

Existing genetic methods of neuronal targeting do not routinely achieve the resolution required for mapping brain circuits. New approaches are thus necessary. Here, we introduce a method for refined neuronal targeting that can be applied iteratively. Restriction achieved at the first step can be further refined in a second step, if necessary. The method relies on first isolating neurons within a targeted group (i.e. Gal4 pattern) according to their developmental lineages, and then intersectionally limiting the number of lineages by selecting only those in which two distinct neuroblast enhancers are active. The neuroblast enhancers drive expression of split Cre recombinase fragments. These are fused to non-interacting pairs of split inteins, which ensure reconstitution of active Cre when all fragments are expressed in the same neuroblast. Active Cre renders all neuroblast-derived cells in a lineage permissive for Gal4 activity. We demonstrate how this system can facilitate neural circuit-mapping in Drosophila.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.