Abstract

AbstractThe nickel catalysts derived from Cr‐doped LaNiO3 perovskite‐like precursors were characterized by X‐ray diffraction, high‐resolution transmission electron microscopy, temperature‐programmed oxidation, temperature‐programmed reduction, and X‐ray photoelectron spectroscopy. Their catalytic performance in CO2 reforming of methane under microwave irradiation was investigated. It was found that the structure and morphology of the oxide composites in this research were influenced by the ratio of Ni and Cr, and the mismatch of La3+, Ni3+, and Cr3+ may cause phase segregation. The catalytic performance of the Ni catalysts is dependent on the oxygen mobility of the perovskite oxide matrix, the content of the reduced Ni0, and the content of the remaining perovskite structure. The mobile oxygen in the perovskite matrix in the catalyst may enhance the conversion of CO2 during the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.