Abstract

Due to the high theoretical specific capacity and low cost, FeF3·0.33H2O has become one of the potential choices of cathode materials for sodium-ion batteries. However, the poor intrinsic conductivity limits its practical applications. Herein, the atomic substitution is used to improve its intrinsic conductivity. The first-principles calculation results show that Cr3+ doping can reduce the band gap of FeF3·0.33H2O to improve its intrinsic conductivity. The discharge specific capacity of Fe0.95Cr0.05F3·0.33H2O with a narrowest band gap is 194.02 mA h/g at 0.1 C within the range of 1.4-4.0 V, which is higher than that of FeF3·0.33H2O (136.47 mA h/g). Using the electrochemical impedance spectroscopy and galvanostatic intermittent titration technique tests, it is found that Rct of Fe0.95Cr0.05F3·0.33H2O is reduced and DNa+ is almost unchanged, as compared to FeF3·0.33H2O.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.