Abstract
Due to the ability of circRNA to bind with corresponding RBPs and play a critical role in gene regulation and disease prevention, numerous identification algorithms have been developed. Nevertheless, most of the current mainstream methods primarily capture one-dimensional sequence features through various descriptors, while neglecting the effective extraction of secondary structure features. Moreover, as the number of introduced descriptors increases, the issues of sparsity and ineffective representation also rise, causing a significant burden on computational models and leaving room for improvement in predictive performance. Based on this, we focused on capturing the features of secondary structure in sequences and developed a new architecture called CRBPSA, which is based on a sequence-structure attention mechanism. Firstly, a base-pairing matrix is generated by calculating the matching probability between each base, with a Gaussian function introduced as a weight to construct the secondary structure. Then, a Structure_Transformer is employed to extract base-pairing information and spatial positional dependencies, enabling the identification of binding sites through deeper feature extraction. Experimental results using the same set of hyperparameters on 37 circRNA datasets, totaling 671,952 samples, show that the CRBPSA algorithm achieves an average AUC of 99.93%, surpassing all existing prediction methods. CRBPSA is a lightweight and efficient prediction tool for circRNA-RBP, which can capture structural features of sequences with minimal computational resources and accurately predict protein-binding sites. This tool facilitates a deeper understanding of the biological processes and mechanisms underlying circRNA and protein interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.