Abstract

1. The membrane characteristics of the slowly adapting stretch receptor from the crayfish, Astacus fluviatilis, were examined with electrophysiological techniques consisting of membrane potential recording, voltage clamp and ion-sensitive microelectrodes. 2. The passive membrane current (Ip) following step changes of the membrane potential to levels above 0 mV required more than a minute to decay to a steady-state level. 3. The stretch-induced current (SIC, where SIC = Itotal--Ipassive) was not fully developed until the Ip had decayed to a steady state. 4. With Ip at the steady state and the stretch-induced current at the O-current potential, a slow stretch-induced inward current was isolated. The latter reaches a maximum after 1 sec of stretch and declines even more slowly after stretch. The I-V relation of the slow current had a negative slope and reversed sign near the resting potential. It is suggested that this current is due to a Cl- conductance change. 5. The stretch-induced current, consisting of a rapid transient phase and a steady component can be isolated from the slow stretch-induced current at a holding potential corresponding to the resting potential. 6. The SIC-Em relation is non-linear and reverses sign at about +15 mV. 7. In a given cell, the reversal potential of the stretch-induced potential change obtained with current clamp coincided with the 0-current potential of the stretch-induced current obtained by voltage clamp. The average value from twenty-six cells was +13 +/- 6.5 mV; cell to cell variability seemed to be correlated with dendrite length. 8. Tris (mol. wt. 121) or arginine (mol. wt. 174) susbstituted for Na+ reduces but does not abolish the stretch-induced current. 9. The permeability ratios of Tris:Na and arginine:Na were estimated from changes in the 0-current potential as these cations replaced Na+ in the external medium. The PTris:PNa was somewhat higher (0.31) than the Parginine:PNa ratio (0.25). 10. Changes in the external Ca2+ concentration had no effect on the 0-current potential in Na or Tris saline. However, reducing Ca2+ did augment the stretch-induced current in either saline. A tenfold reduction of Ca2+ increased the conductance (at the 0-current level) about twofold. 11. Intracellular K+ and Cl- activities were obtained with ion sensitive electrodes. The average values from six cells were aiK = 133 +/- 34 mM and aiCl = 15.2 +/- 1.8 mM S.D.). EK was about 20 mV more negative than Em and ECl was about 10 mV more positive than Em. 12. aik and resting Em undergo large changes in K+-free solutions. After 60 min, ak was reduced eightfold and Em was reduced from -67 to -40 mV. Reduced Ca2+ in K+-free augments the rate of these changes. Receptor potential amplitude was also reduced in K+-free solution but could be restored upon polarizing the membrane to the pre-existing resting level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call