Abstract

In this study, crayfish shell was pyrolyzed at 600°C to obtain an unmodified biochar (CS600). MgCl2 was used as a modifier to pretreat crayfish shell to produce a modified biochar (CS600-MgCl2) under the same pyrolysis conditions. The two biochars were characterized for physicochemical properties and evaluated for lead (Pb2+) sorption ability to determine the modification mechanism. Mono-element batch adsorption experiments were conducted to compare the sorption performances of CS600 and CS600-MgCl2 to Pb2+ in aqueous solutions. All the experiments were carried out at pH of 7. According to the Freundlich-Langmuir model, CS600-MgCl2 had a higher adsorption capacity (152.3mg/g) than CS600 (134.3mg/g). FTIR, SEM, XRD, BET, and ICP analyses were applied to inform the interpretation of the mechanism. CS600 was calcium-rich and mainly removed Pb2+ through the ion exchange mechanism by replacing Ca2+ in the biochar. The increased Pb2+ adsorption capacity of CS600-MgCl2 was mainly due to the enlarged specific surface area and the formation of Mg3(OH)5Cl·4H2O on the modified biochar. Findings of this study suggest that both CS600 and CS600-MgCl2 can be used to remove heavy metal ions from wastewater and MgCl2 can improve the sorption performance of biochar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.