Abstract

The Web has become an important knowledge source for resolving system installation problems and for working around software bugs. In particular, web-based bug tracking systems offer large archives of useful troubleshooting advice. However, searching bug tracking systems can be time consuming since generic search engines do not take advantage of the semi-structured knowledge recorded in bug tracking systems. We present work towards a semantics-based bug search system which tries to take advantage of the semi-structured data found in many widely used bug tracking systems. We present a study of bug tracking systems and we describe how to crawl them in order to extract semi-structured data. We describe a unified data model to store bug tracking data. The model has been derived from the analysis of the most popular systems. Finally, we describe how the crawled data can be fed into a semantic search engine to facilitate semantic search.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.