Abstract

Inductively coupled plasma-mass spectrometry (ICP-MS) is a widely used analytical technique and produces highly accurate results. One of the main disadvantages of the technique, however, is the necessity of solid sample preparation into a solution; this is remedied by the use of laser ablation (LA) for direct solid sampling. LA is the process of delivering energy to a sample via a laser and, consequently, removing part of the sample and forming a small crater on the surface of the sample. Currently there exist several issues in LA sample introduction to ICP-MS commonly called ‘elemental fractionation’. A better understanding of fundamental laser ablation mechanisms and particle generation during LA process are necessary in order to efficiently couple the laser beam into the sample, ablate a reproducible quantity of mass, minimize the plasma shielding and fractionation, and control and optimize ablated particle transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.