Abstract

In this paper, a novel method for autonomous navigation for an extra-terrestrial body landing mission is proposed. Based on state-of-the-art crater detection and matching algorithms, a crater edge-based navigation method is formulated, in which solar illumination direction is adopted as a complementary optical cue to aid crater edge-based navigation when only one crater is available. To improve the pose estimation accuracy, a distributed Extended Kalman Filter (EKF) is developed to encapsulate the crater edge-based estimation approach. Finally, the effectiveness of proposed approach is validated by Monte Carlo simulations using a specifically designed planetary landing simulation toolbox.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.