Abstract

Owing to their superior energy absorption capabilities and lightweight characteristics, both aluminum foam and tubular lattice structures based on triply periodic minimal surfaces (named T-TLS) had attracted a lot of attention. However, they had never functioned together in combination. Accordingly, aluminum foam was filled into T-TLS to form foam-filled T-TLS with the aim of enhancing the energy absorption performance, and their mechanical properties under lateral crushing were experimentally and numerically studied. Quasi-static lateral crushing experiments were firstly performed on the empty T-TLS, cylindrical foam filler, and foam-filled T-TLS to obtain deformation modes, force–displacement responses, and crashworthiness parameters. The experimental results indicated that filling aluminum foam changed the deformation mode from a four-hinge mode to a six-hinge mode. Moreover, foam-filled T-TLS displayed significantly enhanced energy absorption performance attributed to the interaction between T-TLS and aluminum foam, as evidenced by higher energy absorption (EA) and specific energy absorption (SEA). Subsequently, validated finite element (FE) models of foam-filled T-TLS were developed to further reveal their crushing responses and crashworthiness performances. Numerical results revealed evident influences of relative densities of T-TLS and foam filler on the deformation mode and energy absorption performance. The competition in stiffness between T-TLS and foam filler led to three distinct deformation modes. Finally, a multi-objective optimization was carried out to derive optimized configurations for foam-filled T-TLS subjected to lateral crushing. In comparison with the baseline designs, the optimal results demonstrated enhanced crashworthiness, with the SEA value increasing by 40.6 to 97.3%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call