Abstract

The main goal of this study is to analyze the effects of the wall and diaphragm thicknesses of a rectangular crash absorber on its crashworthiness performance. The crash absorber has three equally distanced diaphragms inside. A five variable problem is considered where the long and short edge thicknesses along with the thicknesses of the three diaphragms are accounted as design variables. The crashworthiness sensitivity analyses are performed on the initial peak force (IPCF) and specific energy absorption (SEA). 100 training points and 30 test points are created within the design domain using Latin hypercube sampling, and surrogate models are constructed. For each response, the most accurate surrogate model is determined and these models are further used in the sensitivity analysis. The effect of long and short edge thicknesses is found to be higher than the effect of diaphragms in both responses, with the effect of long edge thickness higher than the effect of short edge thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.