Abstract

The new hierarchical circular-joint quadrangular honeycomb is proposed by iteratively replacing the edge-junctions of regular honeycomb with a circular joint. Firstly, the nonlinear finite element analysis is performed through LS-DYNA and the results are validated by experimental data. Then, analytical solutions to crushing resistance of the hierarchical honeycomb are obtained based on the Simplified Super Folding Element (SSFE) theory. The results between the numerical and analytical method are in good agreement, which indicates that the analytical solutions are reliable. Furthermore, parametric studies of the first and second hierarchical order structures are conducted numerically. The results show that the specific energy absorption of the first and second-order hierarchical honeycomb is improved by up to 81.8%, 115.3% respectively compared with the regular honeycomb. It is also found that the out-of-plane crashworthiness performance of the second-order hierarchical honeycomb can be enhanced by increasing relative density. However, the peak crushing force would also increase with the increase in relative density. The findings of this study show that the proposed hierarchical honeycomb is a structural configuration with high energy absorption capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.