Abstract

In this paper, a new hybrid structure of body-centered cubic lattice-filled thin-walled tube is designed, and the hybrid structure specimens of one-piece printing and split-printing are prepared by laser melting technique. The deformation mode and energy absorption characteristics of the new hybrid structure are investigated by experiments and numerical simulations. Under axial compression, the one-piece printed hybrid structure forms more wrinkles with smaller wavelengths, and the specific energy absorption increases by 12.14% compared with the split-printed structure; under transverse compression, the one-piece printed structure does not show the separation of the thin-walled tube from the lattice, and the specific energy absorption increases by 134.83% compared with the split-printed structure. It is worth noting that the designed hybrid structure has a 112.60% (580.15%) increase in specific energy absorption under axial compression (under transverse compression) compared to the empty tube. The effects of wall thickness, lattice density, and loading rate on the crashworthiness of the hybrid structure were investigated using a validated finite element model. This paper provides a new idea for the preparation of lightweight and high-strength energy-absorbing structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call