Abstract

Auxetic materials have recently attracted interest in the field of crashworthiness thanks to their peculiar negative Poisson ratio, leading to densification under compression and potentially being the basis of superior behavior upon impact with respect to conventional cellular cores or standard solutions. However, the empirical demonstration of the applicability of auxeticity under impact is limited for most known geometries. As such, the present work strives to advance the investigation of the impact behavior of auxetic meta-materials: first by selecting and testing representative specimens, then by proceeding with an experimental and numerical study of repeated impact behavior and penetration resistance, and finally by proposing a new design of a metallic auxetic absorber optimized for additive manufacturing and targeted at high-performance crash applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.