Abstract
A spatial lattice structure is proposed to improve the structural crashworthiness and energy absorption. First, a single-cell structure is proposed via a bionic honeycomb, and then the single-cell structure is arrayed to form a spatial lattice structure. The finite element model of the spatial lattice structure for crashworthiness analysis is established. The theoretical model of the plateau stress of the lattice structure under compressive conditions is derived, and its accuracy is verified by the corresponding finite element analysis. After that, the effect of geometrical parameters of single-cell structure on crashworthiness is analyzed. Then, geometrical parameters of single-cell structure and number of single-cell in the X, Y, and Z directions are used as design variables, the mass, and overall size are used as constraints, and specific energy absorption and collision peak force are used as optimization objectives. The multi-objective crashworthiness optimization of spatial lattice structure is carried out, and the optimal lattice structure design is determined via the gray relational analysis coupling entropy weight method. The validity of the finite element model and optimal design is verified by the drop weight impact test. The crashworthiness optimization of spatial lattice structures has important guiding significance for the design of energy-absorbing structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.