Abstract

Many unfortunate victims in road traffic crashes do not receive ideal treatment because their injury severity is not understood at an early stage. Swift crash severity prediction enables trauma and emergency centers to estimate the potential damage resulting from a road traffic crash and accordingly dispatch the proper emergency units to provide appropriate emergency treatment. A two-layer ensemble machine learning model is proposed in this study to predict road traffic crash severity. The first layer integrates four base machine learning models: k-nearest neighbor, decision tree, adaptive boosting, and support vector machine; the second layer classifies the crash severity based on the feedforward neural network model. The models are developed using road traffic crash data of road intersections over 6 years (2011–2016) obtained from Great Britain’s Department of Transport online database. Only the crash features that can be instantaneously and easily obtained are used as an input. To simplify the two-layer ensemble model, principal component analysis technique is used for dimensionality reduction in the second layer of the model. The performance of the two-layer ensemble model is compared with five base models: k-nearest neighbor, decision tree, adaptive boosting, support vector machine, and feedforward neural network. The prediction results reveal that the two-layer ensemble model outperforms the five base classification models based on two performance indicators: testing accuracy and F1 score. The transferability of the developed model is tested using the 3-year crash dataset for Canada obtained from the National Crash Database Online. The outcome indicates that the two-layer ensemble model shows the best performance for the Canadian dataset also. The proposed two-layer ensemble model would be beneficial in predicting crash severity with high accuracy based on limited initial crash information obtained from the crash location. Using this information, trauma centers would be able to prepare for appropriate and prompt medical treatment.

Highlights

  • Road traffic crashes are considered a major threat around the world as they result in fatalities and injuries, which lead to economic and societal losses

  • The results of the proposed two-layer ensemble model were compared with five base machine learning models

  • A general representation of a confusion matrix (CM) for binary output classes is shown in Table 4 – observations of an actual class are shown in the rows; observations of the predicted class are represented in the columns

Read more

Summary

Introduction

Road traffic crashes are considered a major threat around the world as they result in fatalities and injuries, which lead to economic and societal losses. 1.25 million people die annually in leading to an annual economic loss of 260 billion dollars, while non-fatal crashes affect no fewer than 20–50 million people per year, as reported by World Health Organization (WHO) [1]. Since the severity of vehicular collisions is random, traditional parametric techniques such as logit and probit models have been widely used to predict crash severity.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.