Abstract

Investigating drivers’ injury level and detecting contributing factors that aggravate the damage level imposed on drivers and vehicles is a critical subject in the field of crash analysis. In this study, a comprehensive vehicle-by-vehicle crash data set is developed by integrating 5 years of data from California crash, vehicles involved, and road databases. The data set is used to model the severity of rear-end crashes for comparing three analytic techniques: multinomial logit, mixed multinomial logit, and support vector machine (SVM). The results of the crash severity models and the role of contributing factors to the severity outcome of rear-end crashes are extensively discussed. In terms of prediction performance, all three models yielded comparable results; although, the SVM performed slightly better than the other two methods. The results from this study will inform aspects of our driver safety education and design, either vehicle or roadway design, required to be improved to alleviate the probability of severe injuries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.